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Abstract

Non-uniform grids and mesh adaptation have become an important
part of numerical approximations of differential equations over the past
decades. It has been experimentally noted that mesh adaptation leads
not only to locally improved solution but also to numerical stability of
the underlying method.

In this paper we consider nonlinear conservation laws and provide a
method to perform the analysis of the moving mesh adaptation method,
including both the mesh reconstruction and evolution of the solution.
We moreover employ this method to extract sufficient conditions -on the
adaptation of the mesh- that stabilize a numerical scheme in the sense of
the entropy dissipation.

Keywords: conservation laws, numerical methods, adaptive mesh
reconstruction, entropy stability

1 Introduction

Hyperbolic conservation laws appear in various applications. For example, fun-
damental physical laws, the conservation of mass momentum and energy, lead to
the Euler equations of gas dynamics. Further examples arise in traffic flows, shal-
low water flows, magnetohydrodynamics and biology, see, e.g. [29, 45, 15, 12].

Let us consider a scalar conservation law in one space dimension,

ut + f(u)x = 0, x ∈ [a, b], t ∈ [0, T ], (1)

with initial data u0 ∈ L∞([a, b]). In order to simplify the presentation we assume
e.g. periodic boundary conditions or Cauchy problem.
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Adaptivity is a main theme in modern computational simulations of com-
plex physical phenomena. It is important to investigate the behavior of adaptive
schemes for hyperbolic problems, such as (1), which exhibit several interesting
and not trivial characteristics. In literature we can find different mesh adapta-
tion approaches see e.g. [17, 32, 5, 34, 36, 41, 22, 14] and the references therein.

In this work we study the behaviour of certain geometrically driven adaptive
algorithms when combined with the important class of entropy conservative
schemes introduced in [38, 39].

In every time step t = tn we consider the following spatial mesh:

Mn
x = {a = xn1 < · · · < xnN = b}

with variable space step sizes hni = xni+1 − xni , i = 1, . . . , N − 1. The mesh
will be reconstructed in every time step tn. Further, we consider a numerical
approximation Un of the exact solution u over the mesh Mn

x at time t = tn

given as a
Un = {un1 , . . . , unN} .

For both the analysis and the numerical studies of this paper we have used
a specific kind of mesh adaption techniques that we shortly describe here and
in more details in Section 2. Both, the construction and evolution of our non-
uniform meshes and the time evolution of the approximate solutions, are dic-
tated by the Main Adaptive Scheme (MAS) :

- in every time step construct new mesh according to the prescribed adap-
tivity criterion,

- reconstruct the numerical solution over the new mesh,

- evolve the numerical solution in time using the numerical scheme.

MAS will be discussed in details in Section 2; we note here that the number
of spatial nodes is fixed and that the reconstruction of the mesh is realized by
moving its points according to the geometry of the numerical solution.

The use of non-uniform adaptively redefined meshes, in the context of finite
differences, was first studied, among others, in [16], [10], and [40]. The approach
that we follow, for the mesh reconstruction step of MAS (Step 1) was first
introduced in [4, 1]. Applications of MAS on several problems, point out a
strong stabilisation property emanating from the mesh reconstruction see e.g.
[6, 3, 5, 36, 35]. These stabilization properties led in [5] to combine MAS
with the marginal class of entropy conservative schemes. The later were first
introduced by [38] and further studied by [27, 39, 30, 18]. These are semi-discrete
numerical schemes which satisfy an exact entropy equality. On one hand entropy
conservative schemes are interesting on their own right, since they appear in the
context of zero dispersion limits, complete integrable systems and computation
of non-classical shocks. On the other hand they are important as building blocks
for the construction of entropy stable schemes [38, 39, 30].

We note that classical techniques for the analysis of numerical schemes using
moving meshes, only include the time evolution step of the procedure. In order
though to have a complete picture of the quality of the numerical solution under
a mesh adaptation procedure a broader analysis is needed. In this direction the
work done in [35] has provided some constructive analysis tools.
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In the present paper we are able to combine in one relation, the effect of both
the time evolution and the mesh adaptation used in the moving mesh approach.
Let us point out that our approach allows us to represent the effects of both the
adaptive mesh reconstruction as well as finite volume scheme in one conservative
update relation over a reference uniform mesh (22). This approach allows to
apply the entropy stability analysis and derive a sufficient mesh adaptation
criterion to control entropy production.

2 Main Adaptive Scheme (MAS)

Using non-adaptive meshes -both uniform and non-uniform- the evolution of
the numerical solution is dictated solely by the solution update. On the contrary,
in the adaptive mesh case, two more phenomena need to be taken into account;
the construction of the new mesh and the solution update. These steps comprise
the Main Adaptive Scheme (MAS):

Definition 2.1 (MAS). Given mesh Mn
x and approximations Un,

1. (Mesh Reconstruction). Construct new mesh Mn+1
x

2. (Solution Update). Reconstruct Un over Mn+1
x to obtain Ûn.

3. (Time Evolution). Evolve Ûn in time to compute Un+1 over Mn+1
x .

It is important to note that in the case of a fixed mesh, uniform or non-
uniform, there is no need for mesh reconstruction (Step 1.) and effectively no
need for step 2. In such case MAS reduces to just the time evolution step (Step
3.) which is what is usually considered as a numerical scheme. The extra steps
of the adaptive MAS, on one hand, change significantly both the computation
and the analysis of the numerical approximations, and on the other hand are
responsible for stabilization properties of the MAS.

The crucial property of the mesh adaptation that is analysed in this paper is
the following: In the mesh reconstruction step (Step 1.) the nodes of the mesh
are relocated according to the geometric information contained in the discrete
numerical solution:

in areas where the numerical solution is more smooth and flat the density of
the nodes is low, in areas where the numerical solution is less smooth or flat

the density of the nodes should be higher.

In fact, the mesh reconstruction process can be chosen in any suitable way. One
possibility is to use the monitor function which reflects the curvature of the
numerical solution. For details we refer [3, 35].

Further, we consider the solution update procedure (Step 2. of MAS). The
numerical solution Un is given on the old mesh Mn

x and is recomputed as Ûn

on the new mesh Mn+1
x . There are many ways for the reconstruction. In this

work we use conservative piecewise constant reconstructions.
Finally, for the time evolution step (Step 3. of MAS) we use any suitable

numerical scheme for non-uniform meshes. Denoting the mesh-solution pair by

Un =
{
uni , i = 1, . . . , N

}
(2)

Mn
x =

{
Cni , |Cni | = hni , i = 1, . . . , N

}
(3)
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we obtain in the case of finite volume scheme

un+1
i = ûni −

∆tn

hn+1
i

(
F̂ni+1/2 − F̂

n
i−1/2

)
. (4)

Here Ûn = {ûni , i = 1, . . . , N} is a reconstructed Un over Mn+1
x and the nu-

merical flux F is decorated with ˆ since it is computed over the updated values
Û . The numerical flux itself can be any numerical flux valid for non-uniform
grids. We refer to [35, 3] for more details regarding both the implementation of
numerical schemes over non-uniform meshes and their properties.

2.1 Reference uniform mesh

A schematic representation of MAS (2.1) in the form of mesh-solution pairs is
the following{

Mn
x , U

n
}

mesh adapt.−−−−−−−−→
{
Mn+1
x , Ûn

}
num. scheme−−−−−−−−→

{
Mn+1
x , Un+1

}
, (5)

where in the first part we have considered the steps 1 and 2 of MAS and in the
second part the step 3.

In parallel to MAS and (5) we define a new set of mesh-solution pairs where
the meshes are uniform, constant in time, of the same cardinallity as Mn

x and
discretizing the same physical domain.

Definition 2.2 (Reference uniform mesh-solution pair). Let
{
Mx, U

}
and

{
M̄, V

}
be two mesh-solution pairs with Mx =

{
Ci, |Ci| = hi, i = 1, . . . , N

}
, M̄ ={

C̄i, |C̄i| = ∆x, i = 1, . . . , N
}

, U =
{
ui, i = i, . . . , N

}
, and V =

{
vi, i =

1, . . . , N
}

. We call
{
M̄, V

}
the reference uniform mesh-solution pair to

{
Mx, U

}
if

- the meshes Mx and M̄ discretize the same physical domain, and

- the following per-cell mass conservation is satisfied for every i = 1, . . . , N

∆x vi = hi ui. (6)

We prove in Lemma 2.1 that the per-cell conservation property (6) is a result
of a geometric conservation law.

Geometric conservation law

Let us consider a a time dependent cell C(τ) = (x1(τ), x2(τ)). We look for an
appropriate conservation law

ut(x, t) + ξ(u(x, t), x)x = 0, (7)

that expresses the mass conservation of a quantity u using an appropriate ξ(u, x)
function over the moving cell C(τ). Thus, by the Leibniz rule

d

dτ

∫ x2(τ)

x1(τ)

u(x, τ)dx = u(x2(τ), τ)x′2(τ)− u(x1(τ), τ)x′1(τ) +

∫ x2(τ)

x1(τ)

ut(x, τ)dx.

(8)
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If the mass of u over C(τ) remains constant with respect to τ , the following
condition holds∫ x2(τ)

x1(τ)

ut(x, τ)dx = −u(x2(τ), τ)x′2(τ) + u(x1(τ), τ)x′1(τ). (9)

Integrating (7) over C(τ) we obtain∫ x2(τ)

x1(τ)

ut(x, τ)dx+

∫ x2(τ)

x1(τ)

ξ(u(x, τ), x)xdx = 0.

Now, using (9) we get

ξ(u(x2(τ), τ), x2(τ))−ξ(u(x1(τ), τ), x1(τ)) = u(x2(τ), τ)x′2(τ)−u(x1(τ), τ)x′1(τ).

A suitable flux function ξ hence is

ξ(u(x(τ), τ), x(τ)) = u(x(τ), τ)x′(τ). (10)

Therefore, the strong formulation of (7) reads

ut(x, τ) + (u(x, τ)xt)x = 0, (11)

which is referred in the literature as the Geometric Conservation Law (GCL),
see e.g. [46, 44, 7].

As previously announced we can attain the per-cell mass conservation prop-
erty (6) by discretizing the corresponding GCL.

Lemma 2.1. The per-cell mass conservation label (6) is a consequence of the
geometric conservation law (11).

Proof. For every given cell-value pair Ci, ui and the respective reference pair
C̄i, vi –as provided in the Definition 2.2– we set the moving cell C(τ) =
(x1(τ), x2(τ)) for τ ∈ [τ1, τ2] to be a linear interpolation of Ci and C̄i

C(τ) =
τ − τ1
τ2 − τ1

C̄i +
τ2 − τ
τ2 − τ1

Ci.

Now, to attain a discrete version of (11) we integrate it over C(τ)∫ x2(τ)

x1(τ)

ut(x, τ)dx+

∫ x2(τ)

x1(τ)

(u(x(τ), τ)xt(x, τ))x dx = 0,

and invoke (8) to get

d

dτ

∫ x2(τ)

x1(τ)

u(x, τ)dx− u(x2(τ), τ)x′2(τ)

+ u(x1(τ), τ)x′1(τ) +

∫ x2(τ)

x1(τ)

(u(x(τ), τ)xt(x, τ))x dx = 0.

We discretize explicitly in [τ1, τ2] after noting that u = ui at τ = τ1 and u = vi
at τ = τ2, set ∆τ = τ2 − τ1, and recall that |Ci| = hi, and |C̄i| = ∆x to get

1

∆τ
(∆xvi − hiui)− ui

x2(τ2)− x2(τ1)

∆τ
+ ui

x1(τ2)− x1(τ1)

∆τ

+ ui
x2(τ2)− x2(τ1)

∆τ
− ui

x1(τ2)− x1(τ1)

∆τ
= 0
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Figure 1: Geometric conservation law projection. The numerical solution over
the non-uniform adaptive grid (upper graph) along side with the solution over
the reference uniform grid (lower graph). The arrows depict the projection via
the corresponding geometric conservation law that results to the per-cell mass
conservation. The duration of this projection is described by the fictitious time
variable τ .

or simply
∆x vi = hi ui.

And this concludes the proof of the Lemma.

Remark 2.1. The time variable τ used in the previous proof refers to ficticious
time; it does not correspond to the physically relevant time.

We point out that in the analysis we will use the reference uniform mesh-
solution pair to combine the effects of mesh adaptivity and the numerical update.

In view of the Definition 2.2, and after applying the per-cell mass conserva-
tion (6) on the schematic representation (5) of MAS, we get for i = 1, . . . , N :

hni u
n
i = ∆x vni

mesh adapt.−−−−−−−−→ hn+1
i ûni = ∆x v̂ni

num. scheme−−−−−−−−→ hn+1
i un+1

i = ∆x vn+1
i .
(12)

Now, by invoking (12) after multiplying with hn+1
i , we can rewrite the

scheme (4) over the uniform reference mesh

vn+1
i = v̂ni −

∆tn

∆x

(
F̂ni+1/2 − F̂

n
i−1/2

)
, (13)

where F̂ is the numerical flux function from (4) written in variables v̂; and we
once again note that this schemes describes only the time update step of the
overall scheme.

We refer to Figure 1 for a graphical explanation of the projection between
the non-uniform and the uniform reference mesh.
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3 Entropy stability

It is a well-known fact that for hyperbolic conservation laws we look for the
so called weak entropy solution; i.e. a weak solution that satisfies an entropy
inequality. In numerical approximations of (1) a goal is to look for a scheme
that automatically produces solutions satisfying a discrete version of entropy
inequality. The concept of the so-called entropy stable schemes has been first
introduced in [38, 39] and the corresponding numerical solution then satisfies
the per-cell entropy inequality. If for every cell just discrete entropy equality is
satisfied, such scheme is named entropy stable scheme. We refer to [38, 39, 18,
27] for further details.

Before stating the main theoretical result we introduce the following nota-
tions:

∆vni+1/2 := vni+1 − vni , (14a)

Bni+1/2 :=
f(vni+1)− f(vni )

∆vni+1/2

, (14b)

Qni+1/2 :=
f(vni+1) + f(vni )− 2F̂ni+1/2

∆vni+1/2

, (14c)

∆x
n+1/2
i+1/2 := xn+1

i+1/2 − x
n
i+1/2, (14d)

Hn
i+1/2 :=

(
∆x

n+1/2
i+1/2

)
−

hni
vni −

(
∆x

n+1/2
i+1/2

)
+

hni+1

vni+1, (14e)

Mn
i := ṽni

(
Hn
i−1/2 −H

n
i+1/2

)
. (14f)

Now, we proceed with the main theoretical result.

Theorem 3.1. We use the notations (14a)-(14f) and assume that the following
condition holds

Mn
i ≤

∆tn

4∆x

{(
Dn
i−1/2 −K

3 ∆tn

∆x

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2
)

(∆vni−1/2)2

+

(
Dn
i+1/2 −K

3 ∆tn

∆x

(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2
)

(∆vni+1/2)2

}
,

(15)

where ∆x, ∆tn are respectively the space and time steps that correspond to the
numerical scheme (4). Q∗ is the numerical viscosity of an entropy conservative
scheme (see also Appendix A and [39] for the definition and some properties of
Q∗). Then the mesh adaptation procedure MAS (5) with the numerical scheme
(4) for the time evolution step is entropy stable.

Proof. The numerical scheme for the uniform variables reads, cf. (13)

vn+1
i = v̂ni −

∆tn

∆x

(
F̂ni+1/2 − F̂

n
i−1/2

)
.

We subtract vni to develop the respective incremental form

vn+1
i − vni = v̂ni − vni −

∆tn

2∆x

(
2F̂ni+1/2 − 2F̂ni−1/2

)
.
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Equivalently

vn+1
i − vni

= v̂ni − vni −
∆tn

2∆x

(
f(vni+1) + f(vni )−

f(vni+1) + f(vni )− 2F̂ni+1/2

vni+1 − vni
(vni+1 − vni )

− f(vni )− f(vni−1) +
f(vni ) + f(vni−1)− 2F̂ni−1/2

vni − vni−1

(vni − vni−1)

)
(16a)

= v̂ni − vni −
∆tn

2∆x

((
Bni+1/2 −Q

n
i+1/2

)
∆vni+1/2

+
(
Bni−1/2 +Qni−1/2

)
∆vni−1/2

)
. (16b)

We point out that the term v̂ni − vni is new and accounts for the mesh
reconstruction and solution update steps of the MAS (2.1).
We now express v̂ni −vni in a conservative form with respect to

{
vnj
}

. Accordingly
the size of Ci changes as:

hn+1
i = hni + ∆x

n+1/2
i+1/2 −∆x

n+1/2
i−1/2 , (17)

and the mass of u over Ci as:

hn+1
i ûni = hni u

n
i −

(
∆x

n+1/2
i+1/2

)
−
uni +

(
∆x

n+1/2
i+1/2

)
+
uni+1

+
(

∆x
n+1/2
i−1/2

)
−
uni−1 −

(
∆x

n+1/2
i−1/2

)
+
uni .

(18)

Now, (18) recasts to:

v̂ni = vni −

(
∆x

n+1/2
i+1/2

)
−

hni
vni +

(
∆x

n+1/2
i+1/2

)
+

hni+1

vni+1

+

(
∆x

n+1/2
i−1/2

)
−

hni−1

vni−1 −

(
∆x

n+1/2
i−1/2

)
+

hni
vni .

This relation can also be written as a conservative difference

v̂ni − vni =


(

∆x
n+1/2
i−1/2

)
−

hni−1

vni−1 −

(
∆x

n+1/2
i−1/2

)
+

hni
vni


−


(

∆x
n+1/2
i+1/2

)
−

hni
vni −

(
∆x

n+1/2
i+1/2

)
+

hni+1

vni+1

 (19)

=Hn
i−1/2 −H

n
i+1/2 (20)
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Replacing (20) in (16b) we obtain

vn+1
i − vni =Hn

i−1/2 −H
n
i+1/2

− ∆tn

2∆x

((
Bni+1/2 −Q

n
i+1/2

)
∆vni+1/2 +

(
Bni−1/2 +Qni−1/2

)
∆vni−1/2

)
,

(21)

which can be analogously written as a conservative update over the reference
uniform mesh

vn+1
i = vni −

∆tn

∆x

(
∆x

∆tn
Hn
i+1/2 + F̂ni+1/2 −

∆x

∆tn
Hn
i−1/2 − F̂

n
i−1/2

)
. (22)

We note that the conservative difference Hn
i−1/2−H

n
i+1/2 accounts for the mesh

reconstruction and the solution update step of the MAS.
In order to simplify the presentation of the rest of the proof we assume that
the entropy and the conservative variables (ṽ and v, respectively) coincide, i.e.
we choose U(u) = 1

2u
2 for the entropy function. Now, to recover the entropy-

entropy flux representation of (21), we multiply it by the entropy variables ṽni ,
yielding

U(vn+1
i )− U(vni ) +

∆tn

∆x

(
Gni+1/2 −G

n
i−1/2

)
= Mn

i −
∆tn

∆x
E(x)
i + E(FE)

i

(
∆vn+1/2

)
(23)

where G is the numerical entropy flux. We have further following [39],

E(x)
i =

1

4

[
Di−1/2∆v2

i−1/2 +Di+1/2∆v2
i+1/2

]
,

E(FE)
i ≤K

3

4

(
∆tn

∆x

)2 [ (
Bi+1/2 −Qi+1/2

)2
∆v2

i+1/2

+
(
Bi−1/2 +Qi−1/2

)2
∆v2

i−1/2

]
≤K

3

4

(
∆tn

∆x

)2 [(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2

∆v2
i+1/2

+
(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2

∆v2
i−1/2

]
.

For the derivation of the last inequality we refer to Appendix A. Now, (23)
reduces to

U(vn+1
i )−U(vni ) +

∆tn

∆x

(
Gni+1/2 −G

n
i−1/2

)
≤Mn

i −
∆tn

4∆x

(
Di−1/2∆v2

i−1/2 +Di+1/2∆v2
i+1/2

)
+
K3

4

(
∆tn

∆x

)2 [(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2

∆v2
i+1/2

+
(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2

∆v2
i−1/2

]
,
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Hence, the sufficienct condition for entropy stability reads

Mn
i ≤

∆tn

4∆x

{(
Dn
i−1/2 −K

3 ∆tn

∆x

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2
)(

∆vni−1/2

)2

+

(
Dn
i+1/2 −K

3 ∆tn

∆x

(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2
)(

∆vni+1/2

)2
}
.

In view of (22) we point out that we can define a conservative numerical
scheme to include and describe both the time evolution as well as the adaptation
of the mesh. Such a formulation was missing in previous works dealing with the
analysis of moving mesh methods. Such a formulation can be given for both the
adaptive -as well as for the underlying uniform- mesh-solution pair.

Definition 3.1 (Effective Conservative Scheme). The conservative numerical
scheme for the cell averages of the adaptive mesh-solution pair

{
Mn
x , U

n
}

un+1
i =

hni
hn+1
i

uni −
∆tn

hn+1
i

(
Fni+1/2 −F

n
i−1/2

)
, (24)

where Fni+1/2 = ∆x
∆tnH

n
i+1/2 + F̂ni+1/2 . Here Hn

i+1/2, F̂ni+1/2 are given by (14e)

and (13) is defined to be the Effective Conservative Scheme of the mesh-solution
pair {Mn

x , U
n} and the MAS 2.1.

Similarly, the conservative numerical scheme for the reference uniform mesh-
solution pair

{
M̄, V n

}
vn+1
i = vni −

∆tn

∆x

(
Fni+1/2 −F

n
i−1/2

)
(25)

is defined as the Reference Conservative Scheme of the reference uniform mesh-
solution pair as given in Definition 2.2 .

We refer to Figure 2 for a graphical comparison between the non-uniform
mesh-solution pair and the corresponding reference uniform mesh-solution pair.

To further explain some of the ingredients of the previous proof we provide
and example describing the changes of the grid due to the adaptation of the
mesh.

Remark 3.1. To gain further insight into (17), (20) we refer to Figure 3 and
provide three special examples of special movement and the corresponding com-
putations of v̂ni − vni .

- Cell moves to the left.
This means that ∆x

n+1/2
i+1/2 = −rni , ∆x

n+1/2
i−1/2 = −rni−1, so hn+1

i = hni −
rni + rni−1 = rni−1 + lni . The mass of u satisfies hn+1

i ûni = rni−1u
n
i−1 + lni u

n
i ;

writing in v variables v̂ni =
rni−1

hn
i−1

vni−1 +
lni
hn
i
vni or

v̂ni − vni =
rni−1

hni−1

vni−1 −
rni
hni
vni . (26)
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Figure 2: In the first graph the numerical solution of a Burgers problem with
discontinuous initial condition over a non-uniform adaptively redefined mesh
according to the MAS is depicted. In the second graph we have depicted the
corresponding solution over the uniform reference mesh; the relation between
the non-uniform and the uniform solution is the per-cell mass conservation. In
the third graph, both solutions are presented over the non-uniform grid.

- Cell moves to the right.

This means that ∆x
n+1/2
i+1/2 = lni+1, ∆x

n+1/2
i−1/2 = lni , so hn+1

i = hni +lni+1−lni =

rni + lni+1. In this case, the mass of u satisfies hn+1
i ûni = rni u

n
i + lni+1u

n
i+1,

or in v variables v̂ni =
rni
hn
i
vni +

lni+1

hn
i+1
vni+1, or

v̂ni − vni = − l
n
i

hni
vni +

lni+1

hni+1

vni+1. (27)

- Cell moves to both directions.
Similarly, ∆x

n+1/2
i+1/2 = lni+1, ∆x

n+1/2
i−1/2 = −rni−1, so hn+1

i = hni + lni+1 + rni−1.

Moreover hn+1
i ûni = rni−1u

n
i−1 + hni u

n
i + lni+1u

n
i+1, or v̂ni =

rni−1

hn
i−1

vni−1 + vni +

lni+1

hn
i+1
vni+1, or

v̂ni − vni =
rni−1

hni−1

vni−1 +
lni+1

hni+1

vni+1. (28)

Let us point that now the conditions (26)-(28) are simple enough in order to be
tested for a moving mesh algorithm.

4 Numerical experiments

We perform here a series of numerical experiments to analyze the inequality
that appears in Theorem 3.1. To this end we first study the “new” term Mn

i

and then the full inequality (15).
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i−1−
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ûn
i
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i hn

i+1

lni−1−
rni−1−

lni+1 rni+1

(c) The cell i moves to both directions

Figure 3: Three cases of cell movement.

4.1 Experimental study of the Mn
i term

In this section we study the numerical behavior of the Mn
i term given in (14f)

under the influence of cell movement and the geometry of the numerical solution.
To this end we have constructed a numerical method driving the movement of
the cells. The cells move with a prescribed velocity; after each movement the
numerical solution is reconstructed in a mass conservative manner over the new
grid. Time evolution has been suppressed in order to isolate the effect of the
cell movement on Mn

i .
We present the results of the numerical experiment in Figure 4, where in

the first case we consider a constant node velocity and an initial solution profile
that is comprised of an increasing, a constant, and a decreasing part. Since the
velocity of cells movement is kept constant any changes in the sign on Mn

i are
due to the geometry of the solution itself. In the second case the node velocity
is given by the gradient of the numerical solution. The initial profile used is the
same as in the first case.

In both cases we see that Mn
i increases as the cells move towards higher

values of the solution profile and decreases as the cells move towards lower
values of the solution profile. This verifies the discussion from Remark 3.1.

After investigating the dynamics of the term Mn
i our main goal in the next

subsection will be to numerically study the inequality (15).
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(b) Gradient adjusted node velocity

Figure 4: The effect that the geometry of the solution and the movement of the
nodes have on Mi

4.2 Experimental study of inequality (15)

We discretize the domain in cells

Mn
x = {Cni , |Cni | = hni , i = 1, . . . , N} ,

where the numerical solution attains the average values

Un = {uni , i = 1, . . . , N} .

The finite volume scheme we use for the time update (Step 3 of MAS) is written
as

un+1
i = ûni −

∆tn

hn+1
i

(
F̂ni+1/2 − F̂

n
i−1/2

)
,

where the numerical flux F is decorated with ˆ since it is computed over Û =
{ûni , i = 1, . . . , N}. Ûn is the mass conservative reconstruction of Un over Mn+1

x
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Figure 5: Numerical experiments with the local LxF scheme (29) with param-
eters CFL=0.8, N=200, K=1, pw=0.097, t=0.15. Sub-figures (a) and (b) cor-
respond to the uniform mesh case and sub-figures (c) and (d) to the adaptive
mesh case. In every sub-figure, the first graph is the numerical solution, and the
second the corresponding “inequality”. In this test case both the uniform and
the adaptive versions of the scheme are free of oscillations and the corresponding
inequalities carry the proper sign. It is to note however that the discontinuity
is resolved in the adaptive mesh case in over a much smaller domain.

according to the MAS:{
Mn
x , U

n
}

mesh adapt.−−−−−−−−→
{
Mn+1
x , Ûn

}
num. scheme−−−−−−−−→

{
Mn+1
x , Un+1

}
.

The mesh adaptation that we employ follows the steps of MAS; for the mesh
adaptation we use the geometric curvature as estimator function. For further
information on the implementation, the properties, and for a wide range of
numerical experiments using MAS we refer to [4, 6, 3, 5, 36, 35].

In this subsection we will analyse whether (15) holds for various standard
numerical schemes for hyperbolic conservation laws when our moving mesh tech-
nique is applied. The schemes that we will consider are:

- the local Lax-Friedrichs (lLxF) scheme:

F̂ni+1/2 =
f(ûni ) + f(ûni+1)

2
− 0.5 max

(
|ûni |, |ûni+1|

) (
ûni − ûni+1

)
, (29)



Entropy dissipation of moving mesh adaptation 15

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

0.15

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

(a) uniform grid

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

-1

0

1

2

0.15

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

-0.2

-0.1

0

0.1

0.2

(b) uniform grid-detail

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

0.15

0 0.2 0.4 0.6 0.8 1

-1

0

1

(c) adaptive grid

0.505 0.51 0.515 0.52 0.525 0.53

−0.5

0

0.5

1

0.15

0.505 0.51 0.515 0.52 0.525 0.53
−2

−1

0

1

(d) adaptive grid-detail

Figure 6: Numerical experiments with the FTCS scheme (30) with parameters
CFL=0.5, N=200, K=1, pw=0.097, t=0.15. In parallel depictions of the nu-
merical solution (first graph in every sub-figure) along side with the inequality
(second graph in every sub-figure). The uniform mesh case exhibits spurious
oscillations due to the anti-diffusive nature of the FTCS scheme; the correspond-
ing inequality oscillates in the sign as well. On the other hand, the adaptive
mesh case is free of oscillations and the sign of the inequality is the correct one
along the shock.

- the Forward in Time Central in Space (FTCS) scheme:

F̂ni+1/2 =
f(ûni ) + f(ûni+1)

2
, (30)

- the Lax-Wendroff (LxW) scheme:

F̂ni+1/2 = f

(
hni+1 û

n
i+1 + hni û

n
i

hni+1 + hni
− ∆tn

hni+1 + hni

(
f(ûni+1)− f(ûni )

))
. (31)

The results obtained by the adaptive lLxF, FTCS and LxW schemes can bee
seen in Figures 5, 6, 7 respectively. Let us rewrite inequality (15) in the following
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Figure 7: Numerical experiments with the LxW scheme (31) with parameters
CFL=0.8, N=200, K=1, pw=0.097, t=0.15. The oscillations that appear in the
uniform mesh case are in this case due to the dispersive nature of the LxW
scheme; the sign of the inequality is the wrong one. At the same time the
adaptive mesh case is clean of oscillations and the sign of the inequality is
correct along the discontinuity of the solution.

way:

Mn
i −

∆tn

4∆x

{(
Dn
i−1/2 −K

3 ∆tn

∆x

(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)2
)(

∆vni−1/2

)2

+

(
Dn
i+1/2 −K

3 ∆tn

∆x

(
Bi+1/2 −Q∗i+1/2 −Di+1/2

)2
)(

∆vni+1/2

)2
}
≤ 0.

(32)

In every (sub-)figure we present the numerical solution obtained over uniform
and over adaptive grids; along side we present the graph of the left-hand side of
(32).

In the numerical tests, we examine the sign of the LHS of (32) (negative being
the correct one) and study the way our mesh adaptation technique is affecting
it. In more details, we can see that in the oscillatory scheme cases (FTCS and
LxW) the mesh adaptation technique that we use has completely tamed the
oscillations of the solution; see [4, 6, 3, 5, 36, 35] for a thorough numerical (as
well as analytical) study of the stabilization properties of the MAS that we
employ in this work. We moreover see that the sign of the inequality in the
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adaptive case is the correct one along the discontinuties. The solutions over
uniform mesh are oscillatory due to the anti-diffusive (respectively dispersive)
nature of the schemes; the inequality has either oscillatory sign (uniform FTCS)
or the wrong sign (uniform LxW).

5 Conclusions

We study in this paper the entropy dissipation property of the adaptive mesh
reconstruction techniques. We consider a projection from the physical domain
over an underlying uniform mesh. This gives us the opportunity to combine in a
single conservative formulation (Effective Conservative Scheme, Definition 3.1)
the effect of both time evolution and mesh adaptation. The entropy dissipation
of the mesh adaptation appears in Theorem 3.1 in the form of inequality (15) the
sign of which we analyse numerically. We verify numerically, by using oscillatory
schemes that violate (15) when the mesh is uniform, that the mesh adaptation
based on the discrete curvature of the numerical solution and the moving mesh
techniques as described in Section 2, cf [35, 3], can give the proper sign in (15)
and at the same time tame the oscillatory nature of the scheme.

For future work, our aim is to generalize the above ideas on adaptation of
moving for multidimensional problems. On top of the entropy criteria that we
have studied in the present work we want to analyze further desirable proper-
ties of the numerical solution, the numerical scheme, and most notably of the
underlying mesh that should be preserved.
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Appendices

A Entropy stable schemes

In this section we present parts -after some modifications- of the analysis con-
ducted in [38, 39]. We moreover note that these works are to be viewed in the
context of the seminal works on the subject by [13, 31].

A finite volume approximation of the one-dimensional conservation law is
written in the form

un+1
i = uni −

∆tn

∆x

(
Fi+1/2(Un)− Fi−1/2(Un)

)
.

The corresponding viscosity form reads

un+1
i − uni =

∆tn

2∆x

{
−
(
f(uni+1)− f(unu)

)
+Qni+1/2∆uni+1/2

−
(
f(uni )− f(uni−1)

)
−Qni−1/2∆uni−1/2

}
(33)
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with the numerical viscosity given by Qni+1/2 =
f(un

i )+f(un
i+1)−2Fn

i+1/2

∆un
i+1/2

. After

denoting Bi+1/2 =
f(un

i+1)−f(un
i )

∆un
i+1/2

equation (33) can be rewritten as

un+1
i − uni = −∆tn

2∆x

((
Bi+1/2 −Qi+1/2

)
∆uni+1/2

+
(
Bi−1/2 +Qi−1/2

)
∆uni−1/2

)
.

Now, setting Di+1/2 = Qi+1/2 −Q∗i+1/2, with Q∗ the numerical viscosity of an
entropy conservative scheme we obtain

un+1
i − uni = −∆tn

2∆x

((
Bi+1/2 −Q∗i+1/2 −Di+1/2

)
∆vni+1/2

+
(
Bi−1/2 +Q∗i−1/2 +Di−1/2

)
∆uni−1/2

)
.

Next we multiply the last equation with the entropy variables ṽ. After noting
that 〈

ṽni , u
n+1
i − uni

〉
= U(un+1

i )− U(uni )− E(FE)
i (ṽ

n+1/2
i ),〈

ṽni , F
n
i+1/2 − F

n
i−1/2

〉
= Gni+1/2 −G

n
i−1/2 + Exi (ṽni ),

where E(FE)
i (ṽ

n+1/2
i ), Exi (ṽni ) are given by

E(FE)
i (ṽ

n+1/2
i ) =

∫ ξ=1/2

ξ=−1/2

(
1

2
+ ξ

)〈
∆ṽ

n+1/2
i , H(ṽ

n+1/2
i )∆ṽ

n+1/2
i

〉
,

Exi (ṽni ) =
1

4

〈
∆ṽni−1/2, D

n
i−1/2∆ṽni−1/2

〉
+

1

4

〈
∆ṽni+1/2, Di+1/2∆ṽni+1/2

〉
,

we arrive to the entropy-entropy flux pair representation

U(vn+1
i )− U(vni ) +

∆tn

∆x

{
Fni+1/2 − F

n
i−1/2

}
= E(FE)

i (ṽn+1/2)− ∆tn

∆x
Exi (ṽn).

Now, entropy stability implies that:

E(FE)
i (ṽn+1/2)− ∆tn

∆x
Exi (ṽn) ≤ 0. (34)

In order to satisfy (34) the following conditions are sought as sufficient

K3 ∆tn

∆x
(Bi+1/2 −Q∗i+1/2 −Di+1/2)2 ≤ Di+1/2,

K3 ∆tn

∆x
(Bi−1/2 +Q∗i−1/2 +Di−1/2)2 ≤ Di−1/2

for every i. Due to conservative symmetry they give

K3 ∆tn

∆x
(Bi+1/2 ±Q∗i+1/2 ±Di+1/2)2 ≤ Di+1/2 (35)
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The last relation yields the following results for c = ∆x
K3∆tn :

Di+1/2 ≥ 0

(B ±Q∗ ±Di+1/2)2 ≤ cDi+1/2.

This leads to D2
i+1/2 + (2(Q∗ ± B) − c)Di+1/2 + (Q∗ ± B)2 ≤ 0. By setting

k1 = Q∗ + B and k2 = Q∗ − B we get two different quadratic inequalities that
need to be satisfied for Di+1/2:

D2
i+1/2 + (2k1 − c)Di+1/2 + k2

1 ≤ 0 and D2
i+1/2 + (2k2 − c)Di+1/2 + k2

2 ≤ 0.

The necessary restrictions for the existence of a solution are c ≥ 4k1 and c ≥ 4k2.
This mean that Q∗ ±B ≤ c/4, i.e c ≥ 4Q∗ or

∆tn

∆x
≤ 1

4K3Q∗
.
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